久久精品电影网_久久久久久电影_久久99精品久久久久久按摩秒播_天堂福利影院_国产男女爽爽爽免费视频_国产美女久久

JOURNAL OF ALGEBRA

JOURNAL OF ALGEBRA

代數雜志

期刊周期:Semimonthly
研究方向:數學
影響因子:0.666
通訊地址:ACADEMIC PRESS INC ELSEVIER SCIENCE, 525 B ST, STE 1900, SAN DIEGO, USA, CA, 92101-4495
官網:http://www.journals.elsevier.com/journal-of-algebra/
投稿地址:http://ees.elsevier.com/jalgebra/default.asp?acw=1
審稿速度:較快,2-4周

  中文簡介

《代數雜志》是一份領先的國際期刊,發表的論文顯示了在代數和相關計算方面的高質量研究成果。只有最好和最有趣的論文才會被考慮發表在雜志上。考慮到這一點,重要的是,這一貢獻應產生實質性的結果,對實地產生持久的影響。該雜志還在尋找能夠提供創新技術的工作,為未來的研究提供有希望的結果。計算代數部分計算代數部分已被引入,以提供一個適當的論壇,供利用計算機計算作出貢獻,并擴大該期刊的范圍。在《代數雜志》的計算代數部分,下列論文特別受歡迎:?通過計算機計算得到的結果——要適合發表這些結果,必須代表數學的一大進步。用更高的計算機能力來擴展以前的計算是不夠的。相反,貢獻必須展示新的方法和數學結果才能被接受。?特定代數結構的分類(如果合適,以表的形式),這些結構不容易獲得,并且對代數社區有用。?對實驗的描述和結果,提出新的猜想,支持現有猜想,或者對現有猜想給出反例。?論文強調代數建設性的一面,如描述和分析的新算法(不是程序清單,也不是,在第一個實例,討論軟件開發的問題),改進和擴展現有的算法,計算方法的描述并不是嚴格意義上的算法(例如,他們不需要終止)。?代數與計算機科學之間的交互,如自動結構、字詞問題以及組和半組中的其他決策問題,最好,但不一定,強調相關算法的實用性、實現和性能。?歡迎來自代數的所有領域的貢獻,包括代數幾何或代數數論,如果重點是代數方面。描述代數結果或方法的應用的貢獻,例如在編碼理論,密碼學,或微分方程的代數理論是非常受歡迎的。在計算代數部分發表論文的一個重要的通用標準是它對建設性方面的強調。這本雜志有一個開放的檔案。所有已發表的項目,包括研究論文,都可以無限制地訪問,并在發表48個月后永久免費閱讀和下載。存檔中的所有論文均受愛思唯爾用戶許可的約束。

  英文簡介

The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.The Computational Algebra SectionThe Computational Algebra section has been introduced to provide an appropriate forum for contributions which make use of computer calculations and to broaden the scope of the Journal.The following papers are particularly welcome in the Computational Algebra section of the Journal of Algebra:? Results obtained by computer calculations - to be suitable for publication such results must represent a major advance of mathematics. It is not sufficient to extend previous computations by means of higher computer power. Rather the contribution has to exhibit new methods and mathematical results to be accepted.? Classifications of specific algebraic structures (in form of tables, if appropriate), which are not easily obtained and are useful to the algebraic community.? Description and outcome of experiments, to put forward new conjectures, to support existing conjectures, or to give counter examples to existing conjectures.? Papers emphasizing the constructive aspect of algebra, such as description and analysis of new algorithms (not program listings, nor, in the first instance, discussions of software development issues), improvements and extensions of existing algorithms, description of computational methods which are not algorithms in the strict sense (since, e.g., they need not terminate).? Interactions between algebra and computer science, such as automatic structures, word problems and other decision problems in groups and semigroups, preferably, but not necessarily, with an emphasis on practicality, implementations, and performance of the related algorithms.? Contributions are welcome from all areas of algebra, including algebraic geometry or algebraic number theory, if the emphasis is on the algebraic aspects.Contributions describing applications of algebraic results or methods, for example in coding theory, cryptography, or the algebraic theory of differential equations are highly welcome. An important general criterion for the publication of a paper in the Computational Algebra section is its emphasis on the constructive aspects.This journal has an Open Archive. All published items, including research articles, have unrestricted access and will remain permanently free to read and download 48 months after publication. All papers in the Archive are subject to Elsevier's user license.

  近年期刊自引率趨勢圖

  JCR分區

JCR分區等級 JCR所屬學科 分區 影響因子
Q3 MATHEMATICS Q3 0.908

  近年期刊影響因子趨勢圖

  CiteScore數值

CiteScore SJR SNIP 學科類別 分區 排名 百分位
1.50 1.046 1.339 大類:Mathematics 小類:Algebra and Number Theory Q2 41 / 113

64%

  相關數學SCI期刊推薦

SCI服務

搜論文知識網 冀ICP備15021333號-3

主站蜘蛛池模板: 午夜激情免费 | 91精品午夜窝窝看片 | 欧美群妇大交群中文字幕 | 成人在线观看免费 | 韩日精品在线观看 | 国产在线一区二区 | 亚洲精品中文字幕 | 欧美在线一区二区视频 | 日韩精品久久久 | 99亚洲精品 | 日韩欧美国产一区二区 | 免费在线精品视频 | 三级在线免费观看 | 国产高清视频一区二区 | 一区二区三区免费网站 | 欧美99 | 亚洲精品中文字幕在线 | 国产精品亚洲欧美日韩一区在线 | 一区二区日韩 | 成人免费淫片aa视频免费 | 成人在线观看亚洲 | 五月激情婷婷六月 | 国产精品99久久久久久动医院 | 国产精品免费视频一区 | 欧州一区二区三区 | 狠狠草视频 | 午夜羞羞 | 乱码av午夜噜噜噜噜动漫 | 中文字幕一级毛片 | 福利视频一区二区三区 | 国产一区二区不卡 | 婷婷福利视频导航 | 精品视频在线播放 | 亚洲毛片在线观看 | 欧美视频在线播放 | 97色在线视频| 国产一级片网站 | 亚洲精品乱码久久久久久久久 | 久久99久久久久 | 亚洲成人免费视频在线 | 日韩在线一区二区三区 |